57 research outputs found

    Pathological and immunological study of an in ovo complex vaccine against infectious bursal disease

    Get PDF
    The appearance of very virulent strains of infectious bursal disease (IBD) virus at the end of the 1980s made it necessary to develop more effective immunization procedures. To facilitate this, the immunogenicity and the immunosuppressive effect of a mild (G-87), an intermediate (LIBD) and an intermediate-plus (IBDV 2512) IBDV strain were tested after the in ovo inoculation of 18-day-old SPF and broiler chicken embryos. It was established that no noteworthy difference existed between the immunized and the control embryos in hatching rate and hatching weight. The higher the virulence of the vaccine virus strain, the more severe damage it caused to the lymphocytes of the bursa of Fabricius. In SPF chickens, the haemagglutination inhibition (HI) titres induced by a Newcastle disease (ND) vaccine administered at day old decreased in inverse ratio to the virulence of the IBD vaccine strain, while in broiler chickens this was not observed. Despite the decrease of the HI titre, the level of protection did not decline, or did so only after the use of the ‘hot’ strain. SPF chickens immunized in ovo with a complex vaccine prepared from strain IBDV 2512 and IBD antibody showed the same protection against Newcastle disease as the broilers. In broiler chicken embryos immunized in ovo, only strain IBDV 2512 induced antibody production, and such chickens were protected against IBD at 3 weeks of age. The complex vaccine administered in ovo has been used successfully at farm hatcheries as well

    Manual for the production of marek s disease, gumboro disease and inactivated newcastle disease vaccines/ Palya

    No full text
    89 hal.; 21 cm

    Genome sequence of a waterfowl aviadenovirus, goose adenovirus 4

    No full text
    We present, to our knowledge, the first complete genome sequence of a waterfowl aviadenovirus, goose adenovirus (GoAdV) strain P29, and an analysis of its genetic content in comparison with five published aviadenovirus genome sequences. Of the 35 genes predicted to encode functional proteins, the central region of the genome contains 19 (IVa2 to fiber-2) that were inherited from the ancestor of all known adenoviruses. Of the remaining genes, nine have orthologues only in aviadenoviruses and seven lack orthologues in any adenovirus. We also obtained limited sequence data for a pathogenic GoAdV strain D1036/08. Phylogenetic analyses placed the two GoAdV strains monophyletically in the genus Aviadenovirus. We propose designating strains P29 and D1036/08 as GoAdV-4 and GoAdV-5, respectively

    The combination of attenuated Newcastle disease (ND) vaccine with rHVT-ND vaccine at 1 day old is more protective against ND virus challenge than when combined with inactivated ND vaccine.

    No full text
    &lt;p&gt;The recurrent outbreaks of fatal Newcastle disease (ND) in commercial poultry flocks throughout the world indicate that routine vaccinations are failing to sufficiently induce the high levels of immunity necessary to control ND. There is a need for vaccination programmes that could be initiated at 1-day-old for mass application and which would induce a long-lasting immunity, with no need for a booster vaccination at a later age. In this context, the duration of immunity delivered by a vaccination programme including a recombinant herpesvirus of turkeys expressing the F gene of ND virus (rHVT-ND) and live ND vaccine at 1-day-old was compared with a classical programme that included a conventional live and an inactivated ND vaccine at the same age in commercial layer chickens. The humoral, cell-mediated and local immunity were followed weekly and birds were challenged with a viscerotropic velogenic ND virus strain at 6 and 10 weeks of age. We determined that immunity induced by the vaccination programme involving the rHVT-ND vaccine was more protective than that provided by the conventional vaccine-based regime. This might be related to a T-helper type 1 (Th1) cellular-driven immunological response, in contrast to the T-helper type 2 (Th2) humoral-oriented immune response provided by the current conventional vaccine-based vaccination programmes.&lt;/p&gt;</p

    Hormone therapy and loss of kidney function

    No full text

    Oesophageal tonsil of the chicken

    No full text
    The oesophageal tonsil of the chicken is a novel member of the mucosal-associated lymphoid tissue (MALT), which is located around the entrance of the proventriculus. It consists of 6 to 8 single units, which are surrounded by a thin fibrous capsule. Each one is organised around the bottom of the longitudinal folds of the oesophagus, and serves as a 'tonsillar crypt'. Stratified squamous epithelium is infiltrated by lymphoid cells, i.e. T cells, plasma cells, macrophages, and dendritic cells, but not B cells, to form lymphoepithelium (LE). In the LE vimentin-, MHC II- and ATPase-positive cells possibly represent Langerhans' cells, but the appearance of 74.3 positive cells in the LE is unusual, because the 74.3 monoclonal antibody (mAb) recognises chicken follicular dendritic cells in the germinal centre and medulla of the bursal follicles. The subepithelial lymphoid tissue is organised into T- and B-dependent regions, which are the interfollicular areas and the germinal centres, respectively. Existence of high-endothelial venules in the interfollicular region suggests an extensive cellular connection between the oesophageal tonsil and the other lymphoid organs. In the resting oesophagus the lumen is closed, but during swallowing a bolus the crypt opens and the lymphoepithelium can be exposed to undigested food, antigens, infectious agents and vaccines. The location of the oesophageal tonsil, cranial to the stomach, may provide this organ with a unique role as compared to the other parts of the MALT; namely, it may contribute to the replication of infectious bursal disease virus (IBDV) and/or the pathogenesis of infectious bursal disease

    Comparative pathological studies on domestic geese (Anser anser domestica) and Muscovy ducks (Cairina moschata) experimentally infected with parvovirus strains of goose and Muscovy duck origin

    No full text
    Parvovirus infection of Muscovy ducks caused by a genetically and antigenically distinct virus has been reported from Germany, France, Israel, Hungary, some Asian countries and the USA. The pathological changes include those of degenerative skeletal muscle myopathy and myocarditis, hepatitis, sciatic neuritis and polioencephalomyelitis. In the study presented here, day-old and 3-week-old goslings and Muscovy ducks were infected experimentally with three different parvovirus strains (isolates of D-216/4 from the classical form of Derzsy's disease, D-190/3 from the enteric form of Derzsy's disease, and strain FM from the parvovirus disease of Muscovy ducks). All three parvovirus strains caused severe disease in both day-old and 3-week-old Muscovy ducks but in the goslings only the two strains of goose origin (D-216/4 and D-190/3) caused disease with high (90-100%) mortality when infection was performed at day old. Strain FM (of Muscovy duck origin) did not cause any clinical signs or pathological lesions in the goslings. In the day-old goslings and Muscovy ducks the principal pathological lesions were severe enteritis with necrosis of the epithelial cells (enterocytes) of the mucous membrane and the crypts of Lieberkühn, and the formation of intranuclear inclusion bodies. Other prominent lesions included hepatitis and atrophy (lymphocyte depletion) of the lymphoid organs (bursa of Fabricius, thymus, spleen). In goslings infected with the strain originating from the classical form of Derzsy's disease mild myocarditis was also detected. After infection at three weeks of age, growth retardation, feathering disorders, myocardial lesions (degeneration of cardiac muscle cells, lympho-histiocytic infiltration) and hepatitis were the most prominent lesions in both geese and Muscovy ducks. In addition to the lesions observed in the geese, muscle fibre degeneration, mild sciatic neuritis and polioencephalomyelitis were also observed in the Muscovy ducks infected with any of the three parvovirus strains

    Quantification of rHVT-F genome load in feather follicles by specific real-time qPCR as an indicator of NDV-specific humoral immunity induced by day-old vaccination in SPF chickens.

    No full text
    &lt;p&gt;The purpose of this study was to look for a reliable molecular method for confirmation of uptake of recombinant turkey herpesvirus vaccine against Newcastle disease (rHVT-F) and for use as a valuable prediction tool of Newcastle disease virus (NDV)-specific immune response in chickens deprived of maternally derived antibody (MDA). A quantitative real-time polymerase chain reaction (real-time qPCR) specific to rHVT-F was developed. The method was applied to various tissue samples taken from specific pathogen free (SPF) chickens experimentally inoculated at day-old with one dose of rHVT-F vaccine over a 6-week period. Among the tested tissues, the rHVT-F vaccine was detected predominantly in the bursa of Fabricius (BF) and the lung for the first week, followed by a progressive decline from 9 days onwards. Then, an increase of genome load was observed in the feather follicles (FF) with a peak at 2 weeks, rising to a level almost 10(3)-fold greater than in the other tissues. Importantly, the rHVT-F genome load in FF appeared to be strongly correlated to the humoral immunity specific to NDV as evaluated by haemagglutination inhibition (HI) test and NDV-specific IgG, IgM and IgA ELISAs. This is the first report of quantification of rHVT-F vaccine in FF and its correlation with the induction of ND-specific immune response in chickens with no MDA. Our data indicate that the application of this real-time qPCR assay on FF samples taken from chickens in the field may be used to confirm rHVT-F vaccine administration and uptake with the important added benefit of offering a non-disruptive sampling procedure. &lt;/p&gt;</p

    Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain.

    No full text
    &lt;p&gt;A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction of viral shedding in the vaccinated birds.&lt;/p&gt;</p
    corecore